
Genetic Programming of Autonomous Agents for
Perimeter Maintenance

Scott M. OʼDell
Bradley University
1729 Churchill Dr.

Dubuque, IA 52001
1-563-581-8713

scott.odell.m@gmail.com

Joel D. Schipper
Bradley University

1501 West Bradley Avenue
Peoria, IL 61625
1-309-677-2260

jschipper@bradley.edu

ABSTRACT
Research in genetic programming (GP) for the control of
autonomous agents often employs grid-based simulations to
evolve prototypical solutions. However, grid-based simulations
produce solutions that are often impractical on physical robotic
platforms. Our research evolves perimeter maintenance control
programs to illustrate the limitations of grid-based approaches and
explore the advantages of using a continuous simulator when
evolving programs for physical autonomous agents.

Perimeter maintenance is a task where a group of autonomous
“guard” agents are deployed around a “base” to detect “enemy”
agents before they reach the base. For this research, GP software
and simulators were developed to approximate the movements of
physical agents. To illustrate the limitations of evolving
autonomous agent control programs using a grid-based simulator,
early experiments evolved perimeter maintenance agents in the
grid domain. Later experiments replaced the grid-based simulator
with a continuous simulator to demonstrate its advantages when
generating control programs for physical autonomous agents. The
experiments performed explore multiple fitness functions for
evolving homogenous and heterogeneous teams of guards as well
as the co-evolution of guards and enemies. The approach has
produced autonomous agent control programs that display
intelligent perimeter maintenance behavior in a continuous
simulator by patrolling a circular area around the base.

Keywords
Genetic Programming, Autonomous Agents, Perimeter
Maintenance, Cooperative Multi-Agent Systems, Co-Evolution.

1. INTRODUCTION
Genetic programming (GP) is a machine learning technique based
on the work of John R. Koza [1], with origins rooted in genetic
algorithm theory [2]. By simulating natural selection, GP can
evolve programs that solve complex problems with very little
input from the designer.
GP begins by producing a generation of random programs (i.e.
genomes) composed of elements from a designer specified
primitive set. The primitive set must be chosen to give the
program sufficient perceptual, computational, and locomotive
ability to effectively perform its task. Primitives that require
arguments comprise the function set, while primitives without
arguments comprise the terminal set.
GP uses a fitness function to evaluate how well each randomly
generated program performs a designer specified task. A fitness
function returns each program's fitness score. Programs with

higher fitness scores are more likely to contribute their genetic
material to the next generation. Fitness functions must reliably
separate more fit from less fit individuals, even if all individuals
are relatively unfit.
GP produces successive generations of programs using genetic
operators. First, members of the current generation are selected in
proportion to their fitness. Genetic operators then simulate sexual
reproduction (crossover) by combining portions of two programs
to produce a new program, asexual reproduction (reproduction) by
making an exact copy of a program, and biological mutation
(mutation) by randomly altering a portion of the program. These
genetic operators produce a new generation that behaves similarly
to the fittest individuals from the previous generation, focusing
GP’s search for programs on structures that demonstrate high
fitness. The fitness function evaluates the next generation of
programs which in turn is used to produce yet another generation.
This process of evaluation and procreation repeats until a
specified number of generations is produced or a specified fitness
level is met. The output of a genetic programming sequence is the
fittest individual produced during any generation.
The solutions generated by GP are sensitive to evolutionary
factors such as the physical accuracy of simulated environments,
the genetic relatedness of cooperative programs, and the presence
of evolving opponents. In this research, the effects of these factors
are investigated by evolving autonomous agent control programs
to perform perimeter maintenance behavior. The results are then
evaluated to determine how each factor contributes to the creation
of programs that are appropriate for deployment on physical
autonomous agents.

2. LITERATURE REVIEW

2.1. Perimeter Maintenance
Perimeter maintenance is a practical military application useful
for defending a base. As illustrated in Figure 1, a team of
autonomous “guard” agents (green) cooperate to detect intrusions
into the perimeter (blue) surrounding a “base” (black) by “enemy”
agents (red). In [3], engineers use emergent behavior principals to
develop perimeter maintenance robots. Sensor data representing
the positions of nearby objects and the base is sufficient to
produce perimeter maintenance behavior. The robots are designed
to accept a perimeter size as input and revolve around the base at
that distance. The percentage of the perimeter monitored is used to
assess the quality of the control program. Simulations of the
robots were run in the MobileSim simulator, which does not
account for the noise that occurs in physical systems. When the
control programs were placed on physical robots, the robots did

 - 1 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

mailto:jschipper@bradley.edu
mailto:jschipper@bradley.edu

not behave as simulated due to a noisy environment and sensor
readings. To create control programs that operate on physical
robots, the development simulator must include realistic sensor
noise. Our research evolves agents that perform perimeter
maintenance because it is an excellent application for testing
practical autonomous agent control programs due to its reliance
on spatial properties of the environment.

2.2. GP for Autonomous Agent Control
Research utilizing GP to evolve autonomous agent control
programs traditionally simplifies the environment in which
solutions are evolved to quickly produce prototypical solutions
that support a thesis. A commonly used simplification is
employing a grid-based simulator for the world model [1], [4].
Simplifying the simulated environment has a dramatic impact on
the solutions GP produces. Using grid-based simulators to
evaluate fitness produces control programs that rely on discrete
movements and are difficult to adapt to physical autonomous
agents in the continuous real world. The results of our research
indicate that grid-based simulators also distort the space they
represent, making curved navigational paths inefficient.

2.3. Evolving in a Complex Environment
For evolutionary agents to develop useful reactions within an
environment, information about the environment must be
available in a suitable form. Luke [5] uses genetic programming
to develop a team of agents to play soccer in a noisy simulator
designed to simulate soccer matches for the RoboCup software
competition. The simulator provides data about the environment
that is not directly useful for evolving strategies, which means the
time to develop a fit solution is prohibitively large. Luke solves
the problem by condensing complex environmental data and agent
actions (i.e. intercepting a soccer ball) into elements in the
primitive set. The complex primitives allow the evolutionary
sequence to focus on developing soccer-playing strategies rather
than data processing routines. Although writing complex
procedures for the primitive set hastens the evolution process, it
results in blocks of immutable code that cannot be optimized by

the GP process. Therefore, this method is not pursued in our
research. However, the concept of simulator noise is utilized in
later stages of research to evolve agents that can account for
uncertainty in the environment.

2.4. Cooperative Agents and Co-Evolution
Autonomous agents in genetic programming can evolve to
cooperate explicitly through data exchange or implicitly through
interaction in an environment. The effectiveness of cooperation
depends on team composition and the task to be accomplished. In
[6], Floreano and Keller find that the evolved solutions for
cooperative agents in genetically homogenous versus
heterogenous teams are directly dependent on the nature of the
fitness function. Homogenous teams produce superior results with
fitness functions that require high-cost cooperation, whereas
heterogenous teams are superior for evolving low-cost
cooperation. Koza [1] finds that co-evolving opposing agents
often produces more robust results then GP with a single
population. Our research examines the effects of homogenous
versus heterogenous team selection and co-evolution in creating
practical autonomous agent control programs.

3. GP FRAMEWORK
The GP software developed during this research is based on the
template presented in [7] and written in the Ruby programming
language. Ruby was selected for its rapid development cycle and
the ease in which it can interface with faster languages if
simulation time becomes an issue.
Figure 2 displays the architecture of the software components that
comprise the GP framework. To evolve programs, a function set, a
terminal set, and reproduction parameters are provided to the
genetic programming evolutionary sequence (GPES) object,

 - 2 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

Figure 1. Perimeter Maintenance Example

Figure 2. Organization of GP Framework

which organizes the creation of generation objects. Each
generation object has methods to create and organize the genome
objects that store programs as nested arrays. The GPES object
passes the randomly produced genomes of the first generation to
the fitness function object, which initializes the simulator. Within
the simulator, the genomes act as control programs for guard
agents. The interactions between guard, enemy, and base agents
within the simulator determine the fitness score of the genome.
The fitness function object passes the fitness scores back to the
GPES, where a new generation initializes genomes by performing
genetic operations on members of the previous generation. This
process continues until the final generation is evaluated for
fitness. The result returned by the GPES is the genome that
achieves the highest fitness score.

4. GRID-BASED SIMULATIONS
Initial attempts to produce perimeter maintenance behavior used
GP to evolve autonomous agent control programs in a grid-based
simulator. The results of these experiments demonstrate the
limitations of grid-based simulations when evaluating the fitness
of autonomous agent control programs.

This research implements a grid-based simulator with a 32 by 32
unit grid in which each agent occupies a single square unit.
Figure 3 illustrates the structure of the simulator. A base agent
(black) and four guard agents (green) begin at the center of the
grid. Enemies (red) enter the simulation at random times and in
random locations on the edge of the grid. The desired perimeter
size is measured using the Manhattan distance from the base
(blue). When an enemy enters a guard’s sensor range (yellow),
that enemy is removed from the simulation and the guard’s fitness
score is updated to reflect the successful detection of an enemy. If
an enemy enters the base’s perimeter, the enemy is removed
without affecting the guard’s fitness score. Grid-based simulations
utilize two fitness functions. The quantitative fitness function
bases a genome’s fitness score on the number of enemies detected
during the simulations. The qualitative fitness function adds the
Manhattan distance between the enemy and base to the fitness

score each time an enemy is detected, thus, rewarding guard
agents for detecting enemies further from the base.

4.1. Primitive Set
For guard agents to effectively perform perimeter maintenance,
the primitive set must allow the guard to conditionally execute
code depending on its distance from the base and move around the
simulator to detect enemies. All elements in the primitive set
accept and return integer values.

Table 1 outlines the operations performed by the function set. The
“prog” function allows the control program to perform a series of
actions by evaluating the two arguments sequentially. The “>”
function gives the program the ability to conditionally execute the
third or fourth argument depending on the values of the first two
arguments. The standard arithmetic set (+, -, *, /, %) enables the
control program to apply weights to inputs and derive integer
values that are not included in the terminal set.

Table 2 explains the values returned by the terminal set. The
“base” terminal returns the Manhattan distance to the base, which
can be used to conditionally execute procedures based on that
distance. Terminals “forward”, “left”, and “right” enable the agent
to move to any location on the grid while returning the same value
as “base” since the terminals have no value directly associated
with them. Terminals “0” through”6” are constant integers that are
chosen during the creation of the control program and are
inheritable by future generations.

4.2. Homogenous Teams
In the first evolutionary sequence performed with the grid-based
simulator, all four guards shared identical control programs. The
quantitative fitness function was used with a guard sensor radius
of four units and a base perimeter radius of nine units. These sizes
make it impossible for the team of guards to fully protect the
entire perimeter at any time, forcing them to find behaviors that
best defend the base.
Figure 4 shows the result of the genetic programming
evolutionary sequence. The evolved guards move to the position
shown in the figure and remain stationary for the rest of the
simulation. Although this result detects most of the enemies

 - 3 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

Figure 3. Starting Positions in the Grid-Based Simulator

Function Arity Pseudo-code

prog 2 (a) then return(b)

> 4 if (a > b) then (c) else (d)

+, -, *, /, % 2 [standard integer arithmetic]

Table 1. Function Set for Grid-Based Simulation

Terminal Effect

base returns Manhattan distance from guard to base

forward moves agent forward, returns “base”

left turns agent left 90 degrees, returns “base”

right turns agent right 90 degrees, returns “base”

0-6 constant integers

Table 2. Terminal Set for Grid-Based Simulations

during the simulation, common sense would suggest that a real
autonomous agent could protect more of the base by patrolling the
perimeter in a circular pattern. The structure of the grid domain
inherently prevents the evolution of such a behavior because as a
guard moves from one corner of the perimeter to another it leaves
a large portion of the perimeter unprotected. The grid domain is a
distortion of the real world, which creates positions of higher
value that do not exist in the continuous domain. In this case,
using a grid-based simulator compromises the practicality of the
solution.

4.3. Heterogenous Teams
The second evolutionary sequence split the guards into four
separate populations to evolve independently so that each
population could potentially assume a unique role in defending
the base. Each of the four populations had a designated starting
position near the base (north, south, east, west). The qualitative
fitness function was used for this sequence and the base’s
perimeter was reduced to a one unit radius. The fitness function
took a genome from each of the populations and places it in its
designated starting position. Each individual received the fitness
score earned by the team as a whole and the process was repeated
so that each genome was evaluated with five different teams.
Figure 5 shows the result of evolving heterogenous teams. The
guards in the north and east positions remain stationary to ensure
that no enemies reach the base and that modest detection scores
are added to the team’s fitness. The other two positions evolved to
seek large detection scores by wandering further from the base,
but attaining a lower detection rate. The same effect would be
achieved if only one agent remained at the base, but the GP
sequence yielded two base protecting programs. This
demonstrates the problem of redundancy when evolving
heterogenous teams. In populations that remain at the base,
genetic operators occasionally produce programs that leave the
base. Two populations evolve the same role to ensure the base
does not become unprotected. In this case, the nature of GP
compromises the practicality of the solution by evolving
redundant agents.

4.4. Homogenous Teams with Co-Evolution
For the next evolutionary sequence, a population of enemy agent
control programs was evolved simultaneously alongside the guard
population. Co-evolution can decrease the predictability of
solutions because the opposing population exploits strategic
weaknesses until they are corrected. The enemies were given the
same primitive set as the guards with the addition of two terminals
that return the horizontal and vertical distance to the base relative
to the enemy. The quantitative function was used for the guards

 - 4 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

Figure 4. Grid-Based Result for Homogenous Teams

Figure 5. Grid-Based Result for Heterogenous Teams
Figure 6. Grid-Based Result for Homogenous Co-Evolution

with a base perimeter of nine units. Enemies operated as
homogenous teams and received a fitness score equal to the
number of enemies that reached the perimeter of the base.
Figure 6 shows the result of co-evolution using homogenous
teams of guards. The guards evolved to patrol the edge of the grid
where the enemies enter the simulation. The guards’ tactic is the
result of the enemies’ primitive set enabling them to determine the
location of each guard. This makes it unlikely for guards to detect
enemies if the enemies have room to maneuver around them.
Therefore, the guards attempt to detect the enemies before they
have a chance to move. Although the solution displays
intelligence, it is not practical because the edge of the grid is a
construct of the simulation and has no physical analog.

4.5. Heterogenous Teams with Co-Evolution
During the final grid-based evolutionary sequence, enemies
evolved simultaneously with the guards as in the previous
sequence. The guards were placed in heterogenous teams where
each starting position evolved independently. The quantitative
fitness function was used and the base perimeter had a nine unit
radius.

Figure 7 shows that the guards evolved a similar strategy to the
previous sequence. Each guard moves to the edge of the grid to
detect enemies before the enemies can move. Although the
heterogenous team makes the movements of the guards more
unpredictable, the solution is still not practical because the edge of
the grid has no physical analog.

4.6. Limitations of Grid-Based Simulations
The results of using a grid-based simulator show that GP can
evolve autonomous agent control programs that display intelligent
perimeter maintenance behavior. However, simplifying the world
model creates distortions that do not exist in the real world. GP
exploits these distorted areas to increase the fitness score of the
control programs at the expense of their real-world practicality.
GP also exploits the finite size of the simulation and the
predictable starting locations of the enemies by patrolling the edge
of the simulator.

5. CONTINUOUS SIMULATIONS
The goal of using continuous simulators to develop autonomous
agent control programs is to better align the fitness score with
practical solutions that accurately represent the movements of
physical autonomous agents. The results show that GP can utilize
a simple primitive set to produce complex, practical control
programs with continuous movement.

The continuous simulator developed for these experiments uses
polar vectors to represent agents’ positions, headings, and
movements. Figure 8 shows the guards in their starting positions,
the base in the center, and the enemies starting at random
locations at the edge of the simulator. The enemies enter the
simulation at random times, so the guards must evolve a general
solution to detect them. The quantitative fitness function was used
for all experiments in the continuous domain. The simulator has a
radius of fifty units, the base perimeter is seven units and the
guard sensor range is four units. These values ensure the guards
cannot defend the entire perimeter at any given time. Table 3
displays the additional properties of the base, guard, and enemy
agents.

5.1. Primitive Set
The primitive set must be simple so that GP can evolve creative
solutions that are applicable to physical autonomous agents.
Furthermore, it must be robust enough to create controllers for
agents moving in continuous space. To operate in the continuous

 - 5 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

Figure 7. Grid-Based Result for Heterogenous Co-Evolution

Agent Radius Max Velocity Max Rotational Velocity

Base 3 - -

Guard 1 1.5 units per second 45° per second

Enemy 1 1.0 units per second 45° per second

Table 3. Properties of Agents

Figure 8. Starting Positions in the Continuous Simulator

domain, all primitives accept and return polar vectors. The vector
returned by the control program after execution is used to
determine the heading of the agent during each 150ms time step.
Figure 9 shows how the vector returned by the controller
translates to a movement vector that is limited by the maximum
velocity and rotational velocity of the agent. For example, assume
the guard has a maximum velocity of 1.5 units per second and a
maximum rotational velocity of 45° per second. If the guard
control program returns the vector (3∠90°), the magnitude is
saturated to 1.5 and the angle is scaled by 45/180. The resulting
movement vector would be (1.5∠22.5°), which would result in
forward movement of 1.5 units, and adjustment in direction of
22.5° to the right.

Table 4 outlines the function set. The “prog” function is included
to allow control programs to calculate and save values without the
values directly influencing the heading of the agent. The “>”
function is defined for magnitudes and angles so both values can
be used to selectively execute control code. The “X=” function
allows control programs to store three vectors for computing more
complex actions than a typical state-machine. Additionally, the
control programs can scale vectors to calculate a new heading
using the standard vector arithmetic primitives.
Table 5 shows the members of the terminal set. The “base”
terminal returns a vector representing the location of the base
relative to the guard, enabling guards to behave differently

depending on location. The “direction” terminal returns the
guard’s orientation (north = 0°, east = 90°, etc.) Terminal “X”
returns the value stored by the corresponding “X=” function.
Finally, the “vector” terminal represents the static vectors
(magnitude from 0-50 and angle from 0°-360°) inserted into the
genome at creation so that control programs can make
comparisons to vector constants.

5.2. Homogenous Teams
For the first evolutionary sequence in the continuous domain, all
four guards in a homogenous team shared the same control
program and attempted to detect enemies that headed directly
toward the base. Initial solutions for homogenous teams produced
guards that remained in their starting position for the entire
simulation. Such evolution occurred because most programs that
moved the guards caused them to hit the edge of the simulator and
detect very few enemies. As a result, the population converged to
a stationary solution since it was easy to produce. To correct this
problem, a minimum velocity was enforced so that the guards
must move and navigate to obtain a high fitness score.

Figure 10 shows the solution evolved for homogenous teams in
the continuous simulator. The guards immediately collapse inward
towards the base and rapidly circle around it at a fixed radius that
maximizes coverage of the perimeter. Unfortunately, navigation so
close to the base and other guards requires extraordinarily precise
movements, making this particular solution impractical on a

 - 6 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

Terminal Effect

base returns vector from guard to base

direction returns unit vector representing guard’s heading

X return (variable X)

Vector [static vector]

Table 5. Terminal Set for Continuous Simulations

Function Arity Pseudo-code
prog 2 (a) then return (b)

> (Magnitude) 4 if (a.mag > b.mag) then (c) else (d)

> (Angle) 4 if (a.ang > b.ang) then (c) else (d)

X = 1 variable X = (a)

+, -. * 2 [standard vector arithmetic]

Table 4. Function Set for Continuous Simulations

Figure 9. Translating Vectors to Movement

Figure 10. Continuous Result for Homogenous Teams

physical system since sensor noise and inaccuracies in movement
would result in collisions between agents.

5.3. Heterogenous Teams
Another evolutionary sequence evolved four populations of
guards based on their starting positions. Figure 11 shows that each
guard spins in circles near its starting position. This solution
shows how difficult it is for heterogenous teams to cooperate
effectively. Guards that evolve to move far from their starting
position often collide with other guards, eliminating each other
from the simulation and compromising the overall fitness score.
Guards that evolve to keep their distance from the other guards
typically detect a modest amount of enemies while removing the
danger of a collision. The risk associated with pursuing a fitter
control program causes the population to converge with a sub-
optimal solution.

5.4. Homogenous Teams with Co-Evolution
During the next evolutionary sequence enemy control programs
evolved simultaneously alongside homogenous teams of guards.
The primitive set and control scheme of the enemies was the same
as the guards with an added terminal that returned a vector
representing the position of the nearest guard relative to the
enemy. The enemy’s fitness score was equal to the number of
enemies that reached the base’s perimeter.
Figure 12 shows a solution where the guards make large circles in
their respective starting regions. This control program appears to
be less predictable then the solution developed by the
homogenous team strategy but is much less fit when attempting to
detect enemies that move straight toward the base.

5.5. Advantages of Continuous Simulation
Using a continuous simulator results in control programs that are
more practical for physical agents. The distortions present in the
grid-based simulator no longer affect the solutions and evolving
curved navigational paths becomes possible. However, the
accuracy of the continuous simulator presents a new problem. The
control programs are often reckless in how close they come to

other agents due to precise movements in the continuous
simulator that are impractical on simple autonomous vehicles.

6. NOISY SIMULATIONS
To produce control programs that avoid reckless maneuvers, the
simulator was modified by adding Gaussian noise so that
movement and sensor data were no longer precise. Now, guards
that perform reckless maneuvers are likely to collide with the base
or each other. Therefore, simulating noisy sensors and movement
produces more cautious and practical control programs.

6.1. Approximating Noise
To model sensor noise, the noisy simulator adds a vector with a
uniformly random angle and a Gaussian random magnitude to the
ideal sensor vector each time a control program executes the
“base” or “direction” terminals. The Gaussian random magnitude
has a constant variance of one unit regardless of the size of the
ideal vector. For noise present in autonomous agent movement, a
Gaussian random vector is also added to the ideal movement
vector at each time step, however, the variance of the vector is
proportional to 10% of the ideal movement vector so that faster
movements are more susceptible to noise. The movement noise
represents an approximation of the noise present in autonomous
agents.

6.2. Primitive Set
The noisy simulator uses a primitive set that is identical to the set
used for the continuous simulator, see Tables 4 and 5, with the
addition of a noisy “guard” terminal that returns a vector to the
nearest guard. This addition is a response to early experiments in
which control programs remained near their starting positions
because noise would cause them to collide with another guard
when moving from their starting region. The “guard” terminal
allows guards to monitor their proximity and avoid collisions.

 - 7 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

Figure 11. Continuous Result for Heterogenous Teams

Figure 12. Continuous Result for Homogenous Co-Evolution

6.3. Homogenous Teams
Homogenous teams in the noisy simulator produced the most
practical autonomous agent control program. Figure 13 shows that
the guards evolve to orbit the base at a reasonable distance and are
able to maintain a relatively equal separation between each other.
This solution is notably similar to the result of homogenous teams
without noise, but is substantially more cautious in agent
behavior. The amount of noise present in the system appears to
determine the distance at which the guards orbit the base.

6.4. Homogenous Teams with Co-Evolution
An evolutionary sequence involving homogenous teams with co-
evolution produced a similar result to the evolutionary sequence
in the noiseless, continuous simulator. The guards navigated in
much tighter circles than their noiseless counterparts, as illustrated
in Figure 14. The noise once again results in similar, but more
cautious control programs.

6.5. Advantages
By modeling noise in a continuous simulator, GP produces control
programs that are robust enough to deal with the uncertainty noise
introduces without changing the basic strategy of the guards.
Guards evolved in a noisy environment were able to function in
the noiseless simulator, however, the guards evolved in a noiseless
environment were unable to function in the noisy simulator. These
experiments illustrate the importance of evolving agents to deal
with uncertainty when trying to evolve practical solutions.

7. CONCLUSION
The traditional techniques for using GP to evolve autonomous
agent control programs have consequences that trivialize
solutions. For example, grid-based simulations distort the space
they represent, creating positions of higher value that do not exist
in the real world. This research demonstrates that GP can produce
control programs that are robust enough to deal with continuous
and noisy environments. Similar GP techniques can be used to
evolve control programs for deployment on physical autonomous

agents if the simulator can accurately represent the noise present
in physical sensors and actuators.

8. FUTURE WORK
To test the legitimacy of the techniques developed during this
research, future work will focus on implementing GP evolved
control programs on a physical autonomous agent. After a suitable
robotic platform is selected, the characteristics of the platform
must be accurately modeled in the continuous, noisy simulator.
The simulator will then be used to evolve guard agents. The
resulting control programs will be implemented on the
autonomous agent and evaluated.

9. ACKNOWLEDGMENTS
The authors thank Dr. Arnold Patton of the Bradley University
Computer Science Department for his advice and consultation
throughout our research.

10. REFERENCES
[1] Koza, J. Genetic Programming: on the Programming of

Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, 1992.

[2] Holland, J. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI, 1975.

[3] Cohn, J., Weaver, J., and Redfield, S. Cooperative
Autonomous Robotic Perimeter Maintenance. In Florida
Conference on Recent Advances in Robotics 2009
Proceedings (Melbourne, Florida, May 21-22, 2009).

[4] Naeini, A. and Ghaziasgar, M. Improving Coordination via
Emergent Communication in Cooperative Multiagent
Systems: A Genetic Network Programming Approach. In
IEEE International Conference of Systems, Man, and
Cybernetics (San Antonio, TX, October 11-14, 2009).

 - 8 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

Figure 13. Noisy Continuous Result for Homogenous Teams

Figure 14. Noisy Continuous Result for Homogenous Co-Evolution

[5] Luke, S. Genetic Programming Produced Competitive Soccer
Softbot Teams for RoboCup97. In Genetic Programming
1998: Proceedings of the Third Annual Conference
(Madison, WI, July 22-25, 1998).

[6] Floreano, D. and Keller, L. Methods for Artificial Evolution
of Truly Cooperative Robots. In Bio-Inspired Systems:
Computational and Ambient Intelligence (Salamance, Spain,
June 10-12, 2009). Springer Berlin, Heidelberg, Germany,
2009, 15786–15790.

[7] Poli, R., Langdon, W., and McPhee, N. A Field Guide to
Genetic Programming. Creative Commons, San Francisco,
CA, 2008.

 - 9 -
2011 Florida Conference on Recent Advances in Robotics Gainesville, FL, 4-5 May 2011

