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ABSTRACT
Research in genetic programming (GP) for the control of 
autonomous agents often  employs grid-based simulations to 
evolve prototypical  solutions. However, grid-based simulations 
produce solutions that are often impractical  on physical robotic 
platforms. Our research evolves perimeter maintenance control 
programs to illustrate the limitations of grid-based approaches and 
explore the advantages of using  a continuous simulator when 
evolving programs for physical autonomous agents. 

Perimeter maintenance is a task where a group of autonomous 
“guard” agents are deployed around a “base” to detect “enemy” 
agents before they reach the base. For this research, GP software 
and simulators were developed to approximate the movements of 
physical agents. To illustrate the limitations of evolving 
autonomous agent control programs using a grid-based simulator, 
early experiments  evolved perimeter maintenance agents in  the 
grid domain. Later experiments replaced the grid-based simulator 
with  a continuous simulator to demonstrate its advantages when 
generating control programs for physical autonomous agents. The 
experiments performed explore multiple fitness functions for 
evolving homogenous and heterogeneous teams of guards as well 
as the co-evolution of guards and enemies. The approach has 
produced autonomous agent control programs that display 
intelligent perimeter maintenance behavior in a continuous 
simulator by patrolling a circular area around the base. 
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1.   INTRODUCTION
Genetic programming (GP) is  a machine learning technique based 
on  the work of John R. Koza [1], with origins  rooted in genetic 
algorithm theory [2]. By simulating natural selection, GP can 
evolve programs that solve complex problems with very  little 
input from the designer.
GP begins by producing a generation  of random programs (i.e. 
genomes) composed of elements  from a designer specified 
primitive set. The primitive set  must  be chosen to give the 
program sufficient  perceptual, computational, and locomotive 
ability to effectively perform its task. Primitives that require 
arguments comprise the function set, while primitives without 
arguments comprise the terminal set. 
GP uses a fitness function to evaluate how well each randomly 
generated program performs a designer specified task. A fitness 
function returns each program's fitness score. Programs with 

higher fitness scores are more likely to contribute their genetic 
material to the next generation. Fitness functions must reliably 
separate more fit  from less fit individuals, even if all  individuals 
are relatively unfit.
GP produces successive generations  of programs using genetic 
operators. First, members of the current generation are selected in 
proportion to their fitness. Genetic operators then simulate sexual 
reproduction (crossover) by combining portions of two programs 
to  produce a new program, asexual reproduction (reproduction) by 
making an exact  copy of a program, and biological mutation 
(mutation) by randomly altering a portion of the program. These 
genetic operators produce a new generation that  behaves similarly 
to  the fittest individuals  from the previous generation, focusing 
GP’s search for programs on structures that demonstrate high 
fitness. The fitness function evaluates the next generation of 
programs which in turn is used to produce yet another generation. 
This process of evaluation and procreation repeats until a 
specified number of generations  is produced or a specified fitness 
level is  met. The output  of a genetic programming sequence is the 
fittest individual produced during any generation.
The solutions generated by GP  are sensitive to evolutionary 
factors such as the physical accuracy of simulated environments, 
the genetic relatedness of cooperative programs, and the presence 
of evolving opponents. In this research, the effects of these factors 
are investigated by evolving autonomous agent control programs 
to  perform perimeter maintenance behavior. The results are then 
evaluated to  determine how each factor contributes to  the creation 
of programs that are appropriate for deployment on  physical 
autonomous agents.

2.   LITERATURE REVIEW

2.1.   Perimeter Maintenance
Perimeter maintenance is a practical military application useful 
for defending a base. As illustrated in Figure 1, a team of 
autonomous “guard” agents  (green) cooperate to detect intrusions 
into  the perimeter (blue) surrounding a “base” (black) by “enemy” 
agents (red). In [3], engineers use emergent behavior principals to 
develop perimeter maintenance robots. Sensor data representing 
the positions of nearby objects and the base is sufficient to 
produce perimeter maintenance behavior. The robots are designed 
to  accept a perimeter size as input  and revolve around the base at 
that distance. The percentage of the perimeter monitored is  used to 
assess the quality of the control program. Simulations of the 
robots were run in the MobileSim simulator, which does not 
account for the noise that occurs in physical systems. When the 
control programs were placed on physical robots, the robots did 
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not behave as simulated due to a noisy environment and sensor 
readings. To create control programs that operate on physical 
robots, the development simulator must include realistic sensor 
noise. Our research evolves  agents that  perform perimeter 
maintenance because it is an excellent application for testing 
practical autonomous agent control programs due to its reliance 
on spatial properties of the environment.

2.2.   GP for Autonomous Agent Control
Research utilizing GP  to evolve autonomous agent  control 
programs traditionally simplifies the environment in which 
solutions are evolved to quickly produce prototypical solutions 
that support a thesis. A commonly used simplification is 
employing a grid-based simulator for the world model [1], [4]. 
Simplifying  the simulated environment has a dramatic impact  on 
the solutions GP produces. Using grid-based simulators to 
evaluate fitness produces control programs that rely on discrete 
movements and are difficult to adapt to physical autonomous 
agents in the continuous real world. The results of our research 
indicate that grid-based simulators also distort  the space they 
represent, making curved navigational paths inefficient.

2.3.   Evolving in a Complex Environment
For evolutionary agents to  develop useful reactions within an 
environment, information about the environment must be 
available in a suitable form. Luke [5] uses genetic programming 
to  develop a team of agents to play soccer in a noisy simulator 
designed to simulate soccer matches for the RoboCup software 
competition. The simulator provides data about the environment 
that is  not  directly  useful for evolving strategies, which  means the 
time to develop a fit  solution is prohibitively large. Luke solves 
the problem by condensing complex environmental data and agent 
actions (i.e. intercepting a soccer ball) into elements in the 
primitive set. The complex primitives allow the evolutionary 
sequence to focus on developing soccer-playing strategies rather 
than data processing routines. Although writing complex 
procedures for the primitive set hastens the evolution process, it 
results in blocks of immutable code that cannot be optimized by 

the GP process. Therefore, this method is not pursued in our 
research. However, the concept of simulator noise is utilized in 
later stages of research to evolve agents that can account  for 
uncertainty in the environment.

2.4.   Cooperative Agents and Co-Evolution
Autonomous agents in genetic programming can evolve to 
cooperate explicitly through data exchange or implicitly through 
interaction in an environment. The effectiveness of cooperation 
depends on team composition and the task to be accomplished. In 
[6], Floreano and Keller find that the evolved solutions for 
cooperative agents in genetically homogenous  versus 
heterogenous teams are directly  dependent on the nature of the 
fitness function. Homogenous teams produce superior results with 
fitness functions  that require high-cost cooperation, whereas 
heterogenous teams are superior for evolving low-cost 
cooperation. Koza [1] finds that co-evolving  opposing agents 
often produces more robust results then GP with a single 
population. Our research examines the effects of homogenous 
versus heterogenous team selection and co-evolution in creating 
practical autonomous agent control programs.

3.   GP FRAMEWORK
The GP  software developed during this research  is based on the 
template presented  in [7] and written in the Ruby programming 
language. Ruby was selected for its  rapid development cycle and 
the ease in which it can interface with faster languages if 
simulation time becomes an issue. 
Figure 2 displays the architecture of the software components  that 
comprise the GP framework. To evolve programs, a function set, a 
terminal set, and reproduction parameters are provided to the 
genetic programming evolutionary sequence (GPES) object, 
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Figure 1. Perimeter Maintenance Example

Figure 2. Organization of GP Framework



which organizes the creation of generation objects. Each 
generation object has methods to create and organize the genome 
objects that  store programs as nested arrays. The GPES object 
passes the randomly produced genomes of the first generation to 
the fitness function object, which initializes the simulator. Within 
the simulator, the genomes act as  control programs for guard 
agents. The interactions between guard, enemy, and base agents 
within  the simulator determine the fitness  score of the genome. 
The fitness  function object  passes the fitness scores back to the 
GPES, where a new generation initializes genomes by performing 
genetic operations on members of the previous generation. This 
process continues until the final generation is evaluated for 
fitness. The result returned by the GPES is the genome that 
achieves the highest fitness score.

4.   GRID-BASED SIMULATIONS
Initial attempts to produce perimeter maintenance behavior used 
GP to  evolve autonomous agent control programs in a grid-based 
simulator. The results  of these experiments  demonstrate the 
limitations of grid-based simulations when evaluating the fitness 
of autonomous agent control programs. 

This research implements a grid-based simulator with a 32 by 32 
unit  grid in which each agent occupies a single square unit. 
Figure 3 illustrates the structure of the simulator. A base agent 
(black) and four guard agents (green) begin at the center of the 
grid. Enemies (red) enter the simulation at random times and in 
random locations on the edge of the grid. The desired perimeter 
size is measured using the Manhattan distance from the base 
(blue). When an enemy enters a guard’s sensor range (yellow), 
that enemy is removed from the simulation and the guard’s  fitness 
score is updated to reflect the successful detection of an enemy. If 
an enemy enters the base’s perimeter, the enemy is removed 
without affecting the guard’s  fitness  score. Grid-based simulations 
utilize two fitness functions. The quantitative fitness function 
bases a genome’s  fitness  score on the number of enemies detected 
during the simulations. The qualitative fitness  function  adds the 
Manhattan distance between the enemy and base to the fitness 

score each time an enemy is detected, thus, rewarding guard 
agents for detecting enemies further from the base.

4.1.   Primitive Set
For guard agents to effectively perform perimeter maintenance, 
the primitive set must allow the guard to conditionally execute 
code depending on its distance from the base and move around the 
simulator to detect enemies. All elements in the primitive set 
accept and return integer values. 

Table 1 outlines the operations performed by the function  set. The 
“prog” function allows the control program to perform a series of 
actions by evaluating the two arguments sequentially. The “>” 
function gives the program the ability  to conditionally execute the 
third or fourth argument depending on the values of the first two 
arguments. The standard arithmetic set (+, -, *, /, %) enables  the 
control program to apply weights to  inputs and derive integer 
values that are not included in the terminal set. 

Table 2 explains the values returned by the terminal set. The 
“base” terminal returns the Manhattan distance to the base, which 
can be used to conditionally execute procedures based on that 
distance. Terminals “forward”, “left”, and “right” enable the agent 
to  move to any location on the grid while returning the same value 
as “base” since the terminals have no value directly associated 
with  them. Terminals “0” through”6” are constant  integers that are 
chosen during the creation of the control program and are 
inheritable by future generations.

4.2.   Homogenous Teams
In the first evolutionary sequence performed with the grid-based 
simulator, all  four guards shared identical control programs. The 
quantitative fitness  function was used  with a guard sensor radius 
of four units and a base perimeter radius of nine units. These sizes 
make it impossible for the team of guards to fully protect the 
entire perimeter at  any time, forcing them to find behaviors that 
best defend the base.
Figure 4 shows the result of the genetic programming 
evolutionary sequence. The evolved guards  move to the position 
shown in the figure and remain  stationary for the rest of the 
simulation. Although this result detects most  of the enemies 
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Figure 3. Starting Positions in the Grid-Based Simulator

Function Arity Pseudo-code

prog 2 (a) then return(b)

> 4 if (a > b) then (c) else (d)

+, -, *, /, % 2 [standard integer arithmetic]

Table 1. Function Set for Grid-Based Simulation

Terminal Effect

base returns Manhattan distance from guard to base

forward moves agent forward, returns “base”

left turns agent left 90 degrees, returns “base”

right turns agent right 90 degrees, returns “base”

0-6 constant integers

Table 2. Terminal Set for Grid-Based Simulations



during the simulation, common sense would suggest that  a real 
autonomous agent could protect more of the base by patrolling the 
perimeter in a circular pattern. The structure of the grid domain 
inherently prevents the evolution of such a behavior because as a 
guard moves from one corner of the perimeter to another it  leaves 
a large portion of the perimeter unprotected. The grid domain is a 
distortion of the real world, which creates positions of higher 
value that  do not exist in the continuous domain. In this case, 
using a grid-based simulator compromises the practicality of the 
solution. 

4.3.   Heterogenous Teams
The second evolutionary sequence split the guards into four 
separate populations to evolve independently so that each 
population could potentially assume a unique role in defending 
the base. Each of the four populations had a designated starting 
position  near the base (north, south, east, west). The qualitative 
fitness function was used for this sequence and the base’s 
perimeter was reduced to  a one unit  radius. The fitness function 
took  a genome from each of the populations and places it in its 
designated starting position. Each individual received the fitness 
score earned by the team as a whole and the process was repeated 
so that each genome was evaluated with five different teams.
Figure 5 shows the result of evolving heterogenous teams. The 
guards in the north and east positions remain stationary to ensure 
that no enemies reach the base and that modest detection scores 
are added to the team’s fitness. The other two positions evolved to 
seek large detection scores by wandering further from the base, 
but attaining  a lower detection rate. The same effect  would be 
achieved if only one agent remained at the base, but the GP 
sequence yielded two base protecting programs. This 
demonstrates the problem of redundancy when evolving 
heterogenous teams. In  populations that remain at the base, 
genetic operators occasionally produce programs that leave the 
base. Two populations evolve the same role to ensure the base 
does not become unprotected. In this case, the nature of GP 
compromises the practicality of the solution by evolving 
redundant agents. 

4.4.   Homogenous Teams with Co-Evolution
For the next evolutionary sequence, a population of enemy agent 
control programs was evolved simultaneously alongside the guard 
population. Co-evolution can decrease the predictability of 
solutions because the opposing population exploits strategic 
weaknesses until they are corrected. The enemies were given the 
same primitive set  as the guards with the addition of two terminals 
that return the horizontal and vertical  distance to  the base relative 
to  the enemy. The quantitative function was used for the guards 
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Figure 4. Grid-Based Result for Homogenous Teams

Figure 5. Grid-Based Result for Heterogenous Teams
Figure 6. Grid-Based Result for Homogenous Co-Evolution



with  a base perimeter of nine units. Enemies operated as 
homogenous teams and received a fitness score equal to  the 
number of enemies that reached the perimeter of the base.
Figure 6  shows the result of co-evolution using homogenous 
teams of guards. The guards evolved to  patrol the edge of the grid 
where the enemies enter the simulation. The guards’  tactic is the 
result of the enemies’  primitive set enabling them to determine the 
location of each guard. This makes it unlikely for guards to  detect 
enemies if the enemies have room to maneuver around them. 
Therefore, the guards  attempt to detect the enemies before they 
have a chance to move. Although the solution displays 
intelligence, it is not practical  because the edge of the grid is a 
construct of the simulation and has no physical analog.

4.5.   Heterogenous Teams with Co-Evolution
During the final grid-based evolutionary sequence, enemies 
evolved simultaneously with the guards as in the previous 
sequence. The guards  were placed in heterogenous teams where 
each starting position evolved independently. The quantitative 
fitness function was used and the base perimeter had  a nine unit 
radius.

Figure 7 shows that  the guards evolved a similar strategy to the 
previous sequence. Each guard moves to the edge of the grid to 
detect enemies before the enemies can move. Although the 
heterogenous team makes  the movements  of the guards more 
unpredictable, the solution is  still not practical because the edge of 
the grid has no physical analog.

4.6.   Limitations of Grid-Based Simulations
The results of using a grid-based simulator show that GP  can 
evolve autonomous agent control programs that display intelligent 
perimeter maintenance behavior. However, simplifying the world 
model creates distortions that  do not exist in the real world. GP 
exploits these distorted areas to increase the fitness score of the 
control programs at the expense of their real-world practicality. 
GP also exploits the finite size of the simulation and the 
predictable starting locations  of the enemies by patrolling the edge 
of the simulator.

5.   CONTINUOUS SIMULATIONS
The goal of using continuous simulators to develop autonomous 
agent control  programs is  to  better align the fitness  score with 
practical solutions that accurately represent the movements of 
physical autonomous agents. The results show that GP can utilize 
a simple primitive set to produce complex, practical control 
programs with continuous movement.

The continuous simulator developed for these experiments uses 
polar vectors to represent agents’  positions, headings, and 
movements. Figure 8 shows the guards in their starting positions, 
the base in the center, and the enemies starting at random 
locations at the edge of the simulator. The enemies enter the 
simulation at random times, so the guards must evolve a general 
solution  to detect them. The quantitative fitness function was used 
for all  experiments in the continuous  domain. The simulator has a 
radius of fifty units, the base perimeter is seven units and the 
guard sensor range is four units. These values ensure the guards 
cannot defend the entire perimeter at any given time. Table 3 
displays the additional properties of the base, guard, and enemy 
agents.

5.1.   Primitive Set
The primitive set must be simple so that  GP  can evolve creative 
solutions that are applicable to physical autonomous agents. 
Furthermore, it  must be robust enough to create controllers for 
agents moving in continuous space. To operate in the continuous 
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Figure 7. Grid-Based Result for Heterogenous Co-Evolution

Agent Radius Max Velocity Max Rotational Velocity

Base 3 - -

Guard 1 1.5 units per second 45° per second

Enemy 1 1.0 units per second 45° per second

Table 3. Properties of Agents

Figure 8. Starting Positions in the Continuous Simulator



domain, all  primitives accept  and return  polar vectors. The vector 
returned by the control program after execution is used to 
determine the heading of the agent during each 150ms time step. 
Figure 9 shows how the vector returned by the controller 
translates to a movement vector that is limited by the maximum 
velocity and rotational velocity  of the agent. For example, assume 
the guard has a maximum velocity of 1.5 units  per second and a 
maximum rotational velocity of 45° per second. If the guard 
control program returns the vector (3∠90°), the magnitude is 
saturated to 1.5 and the angle is scaled by 45/180. The resulting 
movement vector would be (1.5∠22.5°), which would result  in 
forward movement of 1.5 units, and adjustment in direction of 
22.5° to the right.

Table 4 outlines the function set. The “prog” function is included 
to  allow control programs to calculate and save values without the 
values directly influencing the heading of the agent. The “>” 
function is defined for magnitudes and angles so both values can 
be used to selectively execute control code. The “X=” function 
allows control programs to  store three vectors for computing more 
complex actions than a typical state-machine. Additionally, the 
control programs can scale vectors to calculate a new heading 
using the standard vector arithmetic primitives. 
Table 5 shows the members of the terminal set. The “base” 
terminal returns a vector representing the location of the base 
relative to the guard, enabling guards to  behave differently 

depending on location. The “direction” terminal returns  the 
guard’s orientation (north = 0°, east = 90°, etc.) Terminal “X” 
returns the value stored by the corresponding “X=” function. 
Finally, the “vector” terminal represents the static vectors 
(magnitude from 0-50 and angle from 0°-360°) inserted into the 
genome at creation so that control programs can make 
comparisons to vector constants.

5.2.   Homogenous Teams
For the first  evolutionary sequence in the continuous domain, all 
four guards in a homogenous team shared the same control 
program and attempted to detect enemies that headed directly 
toward the base. Initial solutions for homogenous teams produced 
guards that remained in their starting position for the entire 
simulation. Such evolution occurred because most  programs that 
moved the guards caused  them to hit the edge of the simulator and 
detect very few enemies. As a result, the population converged to 
a stationary solution since it was easy to produce. To correct  this 
problem, a minimum velocity was enforced so  that the guards 
must move and navigate to obtain a high fitness score.

Figure 10 shows the solution evolved for homogenous  teams in 
the continuous simulator. The guards immediately collapse inward 
towards the base and rapidly circle around it at a fixed radius  that 
maximizes coverage of the perimeter. Unfortunately, navigation so 
close to the base and other guards requires extraordinarily precise 
movements, making this  particular solution impractical on a 
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Terminal Effect

base returns vector from guard to base

direction returns unit vector representing guard’s heading

X return (variable X)

Vector [static vector]

Table 5. Terminal Set for Continuous Simulations

Function Arity Pseudo-code
prog 2 (a) then return (b)

> (Magnitude) 4 if (a.mag > b.mag) then (c) else (d)

> (Angle) 4 if (a.ang > b.ang) then (c) else (d)

X = 1 variable X = (a)

+, -. * 2 [standard vector arithmetic]

Table 4. Function Set for Continuous Simulations

Figure 9. Translating Vectors to Movement

Figure 10. Continuous Result for Homogenous Teams



physical system since sensor noise and inaccuracies in movement 
would result in collisions between agents.

5.3.   Heterogenous Teams
Another evolutionary sequence evolved four populations  of 
guards based on their starting positions. Figure 11 shows that each 
guard spins in circles near its starting position. This solution 
shows how difficult it is for heterogenous teams to cooperate 
effectively. Guards that  evolve to move far from their starting 
position  often collide with other guards, eliminating each other 
from the simulation and compromising the overall fitness score. 
Guards that  evolve to keep their distance from the other guards 
typically detect  a modest amount of enemies while removing the 
danger of a collision. The risk associated with pursuing a fitter 
control program causes the population to converge with a sub-
optimal solution.

5.4.   Homogenous Teams with Co-Evolution
During the next evolutionary sequence enemy control programs 
evolved simultaneously alongside homogenous teams of guards. 
The primitive set and control scheme of the enemies was the same 
as the guards with an added terminal that  returned a vector 
representing the position of the nearest  guard relative to the 
enemy. The enemy’s fitness score was equal to the number of 
enemies that reached the base’s perimeter.
Figure 12 shows a solution where the guards make large circles in 
their respective starting regions. This  control program appears to 
be less  predictable then the solution developed by the 
homogenous team strategy but is  much less fit when attempting to 
detect enemies that move straight toward the base.

5.5.   Advantages of Continuous Simulation
Using a continuous simulator results in control programs that  are 
more practical for physical agents. The distortions present in the 
grid-based simulator no longer affect the solutions and evolving 
curved navigational paths becomes possible. However, the 
accuracy of the continuous simulator presents a new problem. The 
control programs are often reckless in how close they come to 

other agents due to precise movements in  the continuous 
simulator that are impractical on simple autonomous vehicles.

6.   NOISY SIMULATIONS
To produce control programs that  avoid reckless  maneuvers, the 
simulator was modified by adding Gaussian noise so  that 
movement and sensor data were no longer precise. Now, guards 
that perform reckless maneuvers are likely to collide with the base 
or each other. Therefore, simulating noisy sensors and movement 
produces more cautious and practical control programs. 

6.1.   Approximating Noise
To model sensor noise, the noisy simulator adds a vector with a 
uniformly random angle and a Gaussian random magnitude to the 
ideal sensor vector each time a control program executes the 
“base” or “direction” terminals. The Gaussian random magnitude 
has a constant variance of one unit regardless of the size of the 
ideal vector. For noise present in autonomous agent  movement, a 
Gaussian random vector is also  added to the ideal movement 
vector at each time step, however, the variance of the vector is 
proportional to 10% of the ideal  movement vector so that faster 
movements are more susceptible to  noise. The movement noise 
represents an approximation of the noise present  in autonomous 
agents.

6.2.   Primitive Set
The noisy simulator uses a primitive set that is identical to the set 
used for the continuous simulator, see Tables 4 and 5, with the 
addition of a noisy “guard” terminal that returns a vector to the 
nearest guard. This addition is a response to early experiments in 
which control programs remained near their starting positions 
because noise would cause them to collide with another guard 
when moving from their starting region. The “guard” terminal 
allows guards to monitor their proximity and avoid collisions.
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Figure 11. Continuous Result for Heterogenous Teams

Figure 12. Continuous Result for Homogenous Co-Evolution



6.3.   Homogenous Teams
Homogenous teams in the noisy simulator produced the most 
practical autonomous agent control  program. Figure 13 shows that 
the guards evolve to orbit  the base at a reasonable distance and are 
able to maintain a relatively equal  separation between each  other. 
This solution is notably similar to the result  of homogenous teams 
without noise, but is substantially more cautious in agent 
behavior. The amount of noise present in the system appears to 
determine the distance at which the guards orbit the base. 

6.4.   Homogenous Teams with Co-Evolution
An evolutionary sequence involving homogenous teams with co-
evolution produced a similar result  to the evolutionary sequence 
in  the noiseless, continuous simulator. The guards  navigated in 
much tighter circles than their noiseless counterparts, as illustrated 
in  Figure 14. The noise once again results  in similar, but more 
cautious control programs.

6.5.   Advantages 
By modeling noise in a continuous simulator, GP  produces control 
programs that are robust enough to deal with the uncertainty noise 
introduces without changing the basic strategy of the guards. 
Guards evolved in a noisy environment  were able to function in 
the noiseless simulator, however, the guards evolved in a noiseless 
environment were unable to function in the noisy simulator. These 
experiments illustrate the importance of evolving agents to deal 
with uncertainty when trying to evolve practical solutions.

7.   CONCLUSION
The traditional techniques  for using GP  to evolve autonomous 
agent control programs have consequences that trivialize 
solutions. For example, grid-based simulations distort the space 
they represent, creating positions of higher value that do not exist 
in  the real world. This research demonstrates that GP  can produce 
control programs that are robust enough to deal  with continuous 
and noisy environments. Similar GP  techniques can be used to 
evolve control programs for deployment on physical  autonomous 

agents if the simulator can accurately represent the noise present 
in physical sensors and actuators.

8.   FUTURE WORK
To test  the legitimacy of the techniques developed during this 
research, future work will focus on implementing GP  evolved 
control programs on a physical  autonomous agent. After a suitable 
robotic platform is  selected, the characteristics of the platform 
must be accurately modeled in the continuous, noisy simulator. 
The simulator will then be used  to evolve guard agents. The 
resulting control  programs will be implemented on the 
autonomous agent and evaluated.
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Figure 13. Noisy Continuous Result for Homogenous Teams

Figure 14. Noisy Continuous Result for Homogenous Co-Evolution
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